Final Presentation in ME 4015: \$50 Bicycle for Developing Nations

Sponsor: Dr. Kevin Kochersberger

Darren Barlow Oliver Donkervoet Charlotte Ebeling Veronika Glitz Wes Kurowski Jason Luci Stephen Patterson Matt Schmidt Ben Seiden R.D. Stoepker Alex Yi

In this presentation, we will explain our concept generation and selection process as well as the consecutive analysis

Customer needs

CAD model of cargo bike

FEA analysis

Wheel and Component designs

Outlook

Our goal is to produce a bicycle for \$50 that is simple in design and eases the strain of transporting goods and services

www.bbc.com

Promote eco-friendly transportation

Increase mobility of population in developing nations

Improves quality of life of target user group

Based on research about the situation in the developing nations and the client's expectation we set up the customer needs

	Affordability	\$ 50	
2	Durability	on unpaved roads puncture resistant tires	horizonsunlimeted.com
	Repairability	easy maintenance	
	Cultural adaptability	women with long dresses	Developmentalidealism.com
	Comfort	long difficult rides	

Importance

Based on research about the situation in the developing nations and the client's expectation we set up the customer needs

Within the design process we want to meet the engineering requirements of a cheap, durable, and sustainable bike

Engineering Requirement	Category	Specification	Threshold	Target	Engineering Requirement	Category	Specification	Threshold	Target
Resistant to	Wheels	Tire Temperature	-10°C to 50°C	-20°C to 60°C	Complete Consulta	Back rack	Carrying Capacity	100 kg	150 kg
Environmental	т.	Average Miles Travelled Before	2000.1	2000 km 5500 km F	Carrying Capacity	Saddle	Carrying Capacity	80 kg	100 kg
Influences	Tires	Puncture	2000 km		Functional Geometry	Frame	Persons of Height	150 cm - 170 cm	120 cm - 190 cm
D. #1. D. 1.		Required Power at 20 kph and 85	0.50 111	205 11		Frame	Lifetime	7 Years	15 Years
Rolling Resistance	Wheels	kg Bike & Rider	250 W	205 W	Durability	Component	Lifetime	3 Years	6 Years
	Wheels	Vertical Forces	2.5 kN	5.0 kN		Wheels	Lifetime	2 Years	3 Years
Shall be Canable of		Rolling Resistance @ Max		30 N	Reparabilty	Frame	Number of Tools Required	5	2
Sustaining Forces	Wheels	Loading Capacity	50 N			Wheel	Number of Tools Required	3	1
	Wheels	Torque	80 Nm	100 Nm		Components	Number of Tools Required	3	1
D1 01 111	WHEEIS	Torque	80 Mil	100 1411		Frame	Type of Frame	Standard	Step Through
Bike Should be as Cheap as Possible	Overall	Cost	\$85	\$50	Cultural Awareness	Components	Pedals	Standard	Barefoot Compatible
Environmentally	Overall	Recyclabe Material	60%	90%	Security	Components	Locking Mechanism	None	Included
Sustainable	Overall	Production Waste	40%	10%	Handling	Overall	Weight	40kg	15kg

Virginia

We chose to explore a multitude of solutions for the functional aspects of our bicycle

Feature	Concept 1	Concept 2	Concept 3	Concept 4	Concept 5
Material Aluminum		Bamboo	Bamboo Carbon Fiber		Wood
Frame type	Step Through	Long Frame	Recumbent	BMX Style	Tricycle
Wheel Size	20"	24"	26"	29"	26" X 4"
Wheel Type	Type Tweel Conventional Solid		Solid Wheel	Sprung Metal	Welded Spokes
Brake type Fixed Gear		V-Brakes	Disc	Coaster	Drag Feet
Drivetrain	Direct Drive	Belt	Chain	Feet	Driveshaft

Long Bike Concept

A CAD model of our cargo bike design was created using the Autodesk Inventor

adjustable seat with a capacity of 100 kg

simple, commonly available steel tubes

Considering Design for Manufacturing and Assembly, we guarantee low cost and repairability

Streamlined bearing designs across the bike

easy welds according to welding

guidelines

Stress analysis on the frame showed that the frame of the cargo bike can carry 240 kg

Estimating material and manufacturing costs for Developing Nations is linked to a high uncertainty

	Price per frame (\$)
Welding and assembling cost from labor	1
Filler material cost	1.48
Shielding gas cost	1.59
Cost of power consumption	0.06
Material cost (8m steel tube)	11.32
Total frame set	15.45

Virginia

Five components of the bicycle were considered for production

Drivetrain		Saddle	Pedals	Brakes
		solemaster		
		Characteristics		
30T chainring 16T cog	73x110 Bottom Bracket	Selle Master Saddle	2x1in steel tubes with bushing/bolt attachment	rear coaster brake front v-brake

Several wheel designs have been generated and compared

The first self manufactured wheel design is composed of two conical steel plates

Front view of wheel and cross section

Two conical steel plates are welded contrarily at the hub and rim

The second wheel design is characterized by a 6 spoke pattern made out of steel flats

Front view of wheel and cross section

Steel flats are welded at hub and rim having different angles to increase bending stiffness

Finite Element Analysis was conducted to examine feasibility of each wheel design

The results of the Finite Element Analysis show that both designs are durable

Table of results for Von Mises stress, displacement and safety factor

Modification of plate design

	Disc Wheel	6-spoked Wheel
FEA based on a vertical for	ce of 1134 N and a torque of 1	18 Nm at the hub during the
Von Mises stress [MPa]	23	75
Displacement [mm]	0.0047	0.06
Safety factor	9	3.41
FEA base	ed on a bending force of 500N	at the hub
Von Mises stress [MPa]	9.86	72
Displacement [mm]	0.025	1.27
Safety factor	15	5.67

Local manufacturing requires easy processing and use of common tools and materials

Spoke wheel

- 1. Rim bending
- 2. Spoke cutting
- 3. Gas welding

Disc wheel

- 1. Rim bending
- 2. Plate cutting
- 3. Plate stamping
- 4. Spot welding

manufacturing jig for welding

The results of the proposed wheel testing plans will finally decide on the wheel design

	Design Specification	Target Value	Threshold value	Test
	Total Weight support	125 kg	90Kg	Static loading test, frontal stiffness
	Deformation (125 kg)	0 cm	2 cm	Static loading test, frontal stiffness
Whole Wheel	Deformation (5 m)	0 cm	4 cm	Drop Test
Whole Wheel	Lifespan (50 mile)	0 cm	2 cm	Trueing test after 50 mi, lateral stiffness
	Ease of Repair	0	4	# of tools
	Ease of Repair	15min	2 hours	amount of time
	Puncture resistance	500 N	250 N	Increasing puncture force (screw driver)
	Lifespan	<10g lost	25 g lost	Weight difference after 50 mi
Tire	Rolling Resistance	0.0022	0.005	Coefficient of rolling resistance (45psi, 15km/h)
	Erosion resistance	10g	25g	Acid/salt test (2 hrs, gasoline) Weight difference of tire
	Compression (static)	1000N	500N	pressure test
Dim	Tension (static)	1000N	500N	pull test
Kim	Bending	50N	25N	Force needed until deformation of 1cm
	Compression/Tension (dynamic)	500N	250N	10000 cycles
	Compression (static)	50N	20N	pressure test
Snakaa	Tension (static, dynamic)	50N	20N	pull test
Spokes	Bending	20N	10N	Force needed until deformation of 1cm
	compression/tension dynamic	25N	10N	10000 cycles
Tubo	Puncture resistance	200N	100N	Increasing puncture force
lube	Maintaining pressure	0 psi lost	1 psi lost	(45 psi, measure again after 5 days)

Testing plan for the different wheel components and specifications

The cost analysis is based on local manufacturing of the designed wheels

Composition of wheel manufacturing and material cost

	Two plates Wheel	6-spoked Wheel		
welding and assembling cost from labor	\$0.25	\$0.25		
Rim, hub, spokes parts manufacturing cost from labor (bending, cutting and rolling)	\$0.15	\$0.05		Retail price of a cheap conventional wheel set
Filler material cost	\$0.37	\$0.37		29.1% of total cost
Gas cost	\$0.40	\$0.40		_
Cost of power consumption	\$0.05	\$0.05		\$23.28
Milele tube and tire	\$4.5	\$4.5		
Material cost	\$18.08	\$11.77		
Total wheel	\$23.80	\$17.39]	
Total wheel set	\$47.60	\$34.78]	Virgini

50% of the deliverables for the project have been completed

Complete ~ 50%	Pending ~ 50%	
 Frame CAD Model Three Wheel CAD Models Wheel FEA Frame FEA Components Establish design specs and testing standards 	 Testing/Fabricating wheels Fabricate frames for testing/shipping Order components 	

We are planning to have a first prototype bike ready by February to do field testing in Senegal

Date	Milestones/Deliverables
Jan 20, 2015 Begin testing of specific parts of the bike	
Feb, 2015	Fabricate bike
End of Feb, 2015	Goal is to have our first prototype bike ready to be shipped to Senegal for field testing
March, 2015	Optimize our design
March 23, 2015	Product launch
May 4, 2015	Final design

In conclusion, we are in the process of designing an affordable bicycle for manufacture and use in developing countries

Focus of design: Affordability and ease of manufacturing

Frame team: CAD analysis and prototype

Component team: saddle, brakes, pedals, drivetrain

Wheel team: wheel testing for final selection

Goal: Prototype by mid February

