### Froduct Launch Latrine Pit Pumping System Mzuzu, Malawi

**Client:** Willy Chipeta **Advisor:** Dr. Kochersberger **Facilitator:** Austin Floeter **Team Members:** Cody Reese, Brett Rush, Saud Alfouzan, Grant Baumgardner, Daniel Miller

## **Problem Description**

- Diarrheal diseases cause 8,800 deaths in Malawi annually, 4,500 of which are children under five years of age.
- Pit latrines are used to improve sanitation, but must be emptied to remain useful
- Emptying can be dangerous and unsanitary

**Challenge:** Use locally available materials to provide a means of safely and efficiently removing sludge from pit latrines.



# Current Fit Emptying Methods





# Specific constraints identified by our dient

### Access

There is currently no standard design for pit latrines in Malawi

Variety of latrine types and latrine entrances

Latrine hole sizes vary from latrine to latrine

### Transportation

Bicycles and motorbikes will be the common means of transporting the product

### Physical characteristics of sludge

Sludge can be stratified, with the most dense section at the bottom

Cludge is liquidized by powring water into the lowbale, and a stirring process

## **Requirements and Specifications**

Client provided list of specs from previous research with information on:

Available materials and manufacturing processes

Minimum required performance

Safety requirements

Size and weight restrictions

Environmental, social, and economic considerations

### **Requirements and Specifications**

| Requirement                                                   | Category          | Specification                  | Threshold | Target    |
|---------------------------------------------------------------|-------------------|--------------------------------|-----------|-----------|
| The pump shall work regardless of latrine size or sludge      | Sludge Properties | Maximum Size of Debris         | 0.05 m    | 0.075 m   |
| composition/stratification                                    |                   |                                |           |           |
|                                                               |                   | Flow Rate                      | 2m³/hr    | 2.5 m³/hr |
|                                                               | Modularity        | Availability of Resources      | 1         | 0         |
|                                                               |                   | Characteristic Length of Pump  | 2 m       | 0.6 m     |
| The pump shall not cause harm to the operator                 | Safety            | Number of Contact Incidents    | 1         | 0         |
|                                                               |                   | Ergonomic                      | 180 W     | 160 W     |
|                                                               |                   | Number of Exposed Moving Parts | 3         | 2         |
| The pump shall cost no more than \$1,500                      | Durability        | Pumping Time for 1 Latrine     | 3 hours   | 2 hours   |
|                                                               |                   | Life Expectancy                | 5 years   | 15 years  |
|                                                               |                   | Cost                           | \$1,500   | \$1,000   |
|                                                               |                   | Drop Height for Shipment       | 0.5 m     | 1 m       |
| The pump and lever shall be easily maneuvered and transported | Portability       | Length of Lever                | 2.5 m     | 1.5 m     |
|                                                               |                   | Weight                         | 25 kg     | 20 kg     |
| The pump shall incorporate common and readily available       | Simplicity        | Minimize rare and inaccessible | 1         | 0         |
| parts/hardware                                                |                   | items                          |           |           |

## First Iteration of Pump

Based upon existing gulper design

Single piston check valve system

Minimally effective

Long Stroke

Leaking Piston

Full body pumping action





## Second Iteration of Pump

Added second check valve

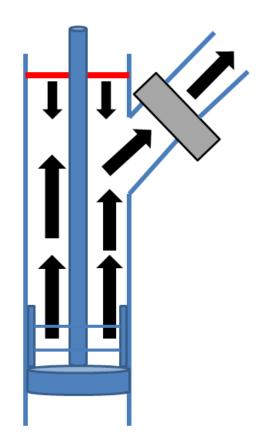
Decreased stroke length

Increased effectiveness

Reduced need for larger lever

Downside: not adjustable



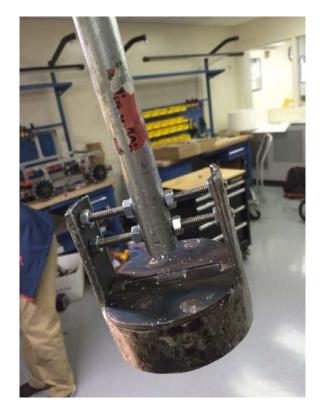



## New Check Valve Impact

Vertical Flow is impeded by stopper and redirected through a check valve

This enables us to use a shorter stroke length and mitigate piston rod tilt

In turn the shorter stroke length reduces the weight of the sludge in the tube while only slightly affecting flow rate

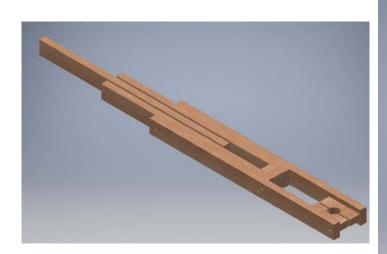



## Second Iteration of piston

#### New Piston Valve








# **Current Detailed Design**

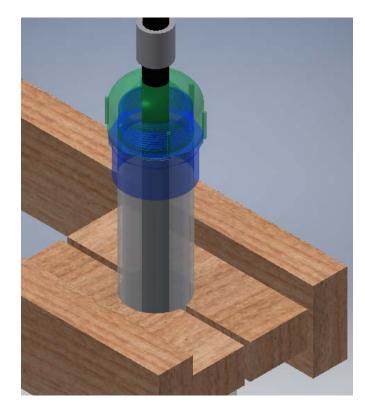
Reduced lever size to increase portability and versatility in smaller latrines

Collapsible to a linear design

Single length for beams






# Detailed Design (CAD Models)

Modular components

PVC guide rods and steel piston pipe attached with threaded couplings


Increases adjustability for different latrines

Addresses stratification issues with variable depth





### **Product Photos**



# Analysis Supporting Design Decisions

### Simple, standard materials

24" extension pipes

Linkage made from one 36" pipe

Lever assembly made from three 8' 2"x4"s

All fasteners either ¼" or ½"

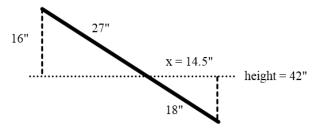
Piston made from 4" door hinge and 3.5" pipe

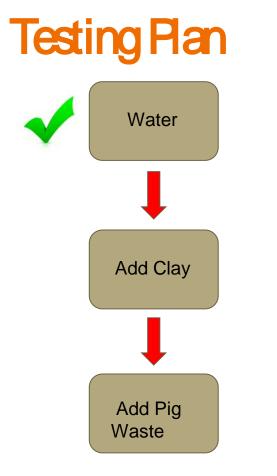
4' Wood beam lever construction

Swing check valve

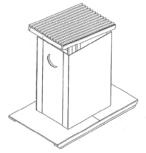
Construisticas ve su juse circula la predita ale




Input pump is 30", output stroke is 20"


3:2 mechanical advantage (input:output)

Fulcrum height lowered 1 inch


Discourages linkage crossover issue at top of stroke

Fulcrum positioned 14.5" behind pump axis to give maximum advantage at bottom of stroke





| Testing Matrix                      |                                   |                          |  |  |
|-------------------------------------|-----------------------------------|--------------------------|--|--|
| Mixture                             | Flow Rate<br>(m <sup>3</sup> /hr) | Force Input<br>(Newtons) |  |  |
| Water                               |                                   |                          |  |  |
| 40% Clay (1113 kg/m <sup>3</sup> )  |                                   |                          |  |  |
| 60% Clay (1183 kg/m³)               |                                   |                          |  |  |
| Pig Waste (1200 kg/m <sup>3</sup> ) |                                   |                          |  |  |
| Pig Waste w/ Trash                  |                                   |                          |  |  |



### Acceptance Citeria

Pump successfully emptied latrine (within 1.5 ft of latrine floor)

Pump empties the latrine in a reasonable amount of time (2 hours)

2 m<sup>3</sup> per hour

Zero occurrences of contact incidents

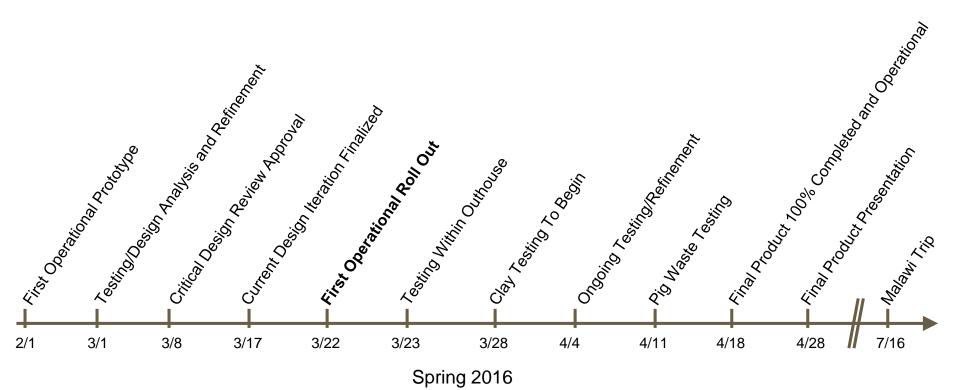
Ensure the pump and lever can be easily transported (by man or bike)

Operational in latrines between 4-8 ft deep

### **Test Photos**










### **Demonstration Video**



### **Project Schedule**





#### **Total Budget for Project: \$3,000**

Project Duration: 30 weeks (2 semesters)

Large portion of budget was intended to be used for transportation to Africa

Amount Spent through project so far (23 weeks): \$521.14

Remaining Budget: \$2,478.86